import pandas as pd from keras.layers import Dense from keras.models import Sequential import sys # # Make a model based on deep learning. # predictors_data: predictor data file as a matrix of shape (x,y); row x is a dataset, column y is a parameter/input node # The number of output node = 1 (this becomes more if the model is for classification) # dataset = sys.argv[1] df = pd.read_table(dataset,delim_whitespace=True).sample(frac=1) predictors = df.drop(['average','max'], axis=1).as_matrix() target = df.average n_cols = predictors.shape[1] # the number of input nodes model = Sequential() # hidden layers model.add(Dense(500, activation='relu',input_shape=(n_cols,))) # n_cols nodes exist in the input layaer model.add(Dense(500, activation='relu')) model.add(Dense(500, activation='relu')) model.add(Dense(500, activation='relu')) # Output layer model.add(Dense(1)) # Compiling the model model.compile(optimizer='adam',loss='mean_squared_error') # Fitting the model model.fit(predictors,target,shuffle=True,verbose=1,validation_split=0.3) model.summary() model.save('model_file.h5')